skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dorta, Ethan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface. 
    more » « less